- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aerts, R (1)
-
Althuizen, I_H J (1)
-
Biasi, C (1)
-
Björk, R G (1)
-
Björkman, M P (1)
-
Böhner, H (1)
-
Carbognani, M (1)
-
Chiari, G (1)
-
Christiansen, C T (1)
-
Clemmensen, K E (1)
-
Cooper, E J (1)
-
Cornelissen, J_H C (1)
-
Davie-Martin, C. L. (1)
-
Dietrich, J (1)
-
Dorrepaal, E (1)
-
Elberling, B (1)
-
Faubert, P (1)
-
Fetcher, N (1)
-
Forte, T_G W (1)
-
Frey, S. D. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Biogenic volatile organic compounds (VOCs) play crucial roles in ecosystems at multiple scales, ranging from mediating soil microbial interactions to contributing to atmospheric chemistry. However, soil VOCs and how they respond to environmental change remains understudied. We aimed to assess how 2 abiotic global change drivers, soil warming and simulated nitrogen (N) deposition, impact soil VOC emissions over time in a temperate forest. We characterized the effect of warming, N deposition, and their interaction on the composition and emissions of soil VOCs during the growing season of 2 consecutive years. We found that chronic warming and N deposition enhanced total VOC emissions at certain times of the year (as high as 332.78 µg m–2 h–1), but that overall VOC composition was not strongly affected by these global change treatments. However, certain compounds, particularly sesquiterpenoids and alkanes, were sensitive to these treatments, with their emissions increasing under both chronic warming and N deposition. Moreover, specific signature VOCs—α-pinene, β-thujone, β-caryophyllene, and 2,4-dimethylheptane—were consistently found under chronic warming and N deposition. This suggests that emissions of specific VOC classes/compounds may increase under global change.more » « less
-
Maes, S L; Dietrich, J; Midolo, G; Schwieger, S; Kummu, M; Vandvik, V; Aerts, R; Althuizen, I_H J; Biasi, C; Björk, R G; et al (, Nature)Abstract Arctic and alpine tundra ecosystems are large reservoirs of organic carbon1,2. Climate warming may stimulate ecosystem respiration and release carbon into the atmosphere3,4. The magnitude and persistency of this stimulation and the environmental mechanisms that drive its variation remain uncertain5–7. This hampers the accuracy of global land carbon–climate feedback projections7,8. Here we synthesize 136 datasets from 56 open-top chamber in situ warming experiments located at 28 arctic and alpine tundra sites which have been running for less than 1 year up to 25 years. We show that a mean rise of 1.4 °C [confidence interval (CI) 0.9–2.0 °C] in air and 0.4 °C [CI 0.2–0.7 °C] in soil temperature results in an increase in growing season ecosystem respiration by 30% [CI 22–38%] (n = 136). Our findings indicate that the stimulation of ecosystem respiration was due to increases in both plant-related and microbial respiration (n = 9) and continued for at least 25 years (n = 136). The magnitude of the warming effects on respiration was driven by variation in warming-induced changes in local soil conditions, that is, changes in total nitrogen concentration and pH and by context-dependent spatial variation in these conditions, in particular total nitrogen concentration and the carbon:nitrogen ratio. Tundra sites with stronger nitrogen limitations and sites in which warming had stimulated plant and microbial nutrient turnover seemed particularly sensitive in their respiration response to warming. The results highlight the importance of local soil conditions and warming-induced changes therein for future climatic impacts on respiration.more » « less
An official website of the United States government
